Puesta en marcha de BIOMETAGAS LA GALERA

EL PROYECTO.
El proyecto de BIOMETAGAS LA GALERA está basado en la producción de biometano gestionando residuos orgánicos biodegradables. El alcance del proyecto consiste, entre otras instalaciones, en una planta de biogás donde gestionar estos residuos y producir gas.
La planta de LA GALERA es el primer proyecto basado en un diseño de planta de biogás de alta potencia de AGF. Se ha diseñado y equipado con los últimos avances de AGF en diseño de procesos de biogás, apoyados por la experiencia previa adquirida y el desarrollo de nuevos procesos e instalaciones. Se considera una planta de alta potencia es aquella que está pensada para procesar más de 90 t/d de residuos orgánicos biodegradables.
A modo de comparativa que permita entender el potencial de esta planta, cada uno de los reactores construidos en la planta de LA GALERA tiene más volumen útil que toda la planta de BIOGASNALIA en su conjunto, lo que permite a esta planta tener un potencial de producción de biogás muy elevado, de más de 4 MWT (potencia total o absoluta, medida en forma de gas). Desde el punto de vista de los residuos, esta planta es capaz de dar solución a una considerable cantidad de residuos biodegradables, que son descompuestos a un gas con poder energético. La escala de la planta de LA GALERA, desde el punto de vista de la eliminación física de residuos y de producción de gas renovable, la convierten, probablemente, en uno de los proyectos de economía circular más importantes realizados hasta la fecha en España.

LA PUESTA EN MARCHA.
A pesar de todos los hechos ocurridos durante el año 2020 por el COVID, en el mes de junio el equipo de AGF consiguió poner en funcionamiento la MPB y realizar las pruebas de funcionamiento para poder proceder, inmediatamente después, durante el mes de julio y agosto, a la puesta en marcha de la planta industrial de LA GALERA.
El equipo comisionado por AGF para realizar esta tarea ha sido responsable del arranque de más de 7 plantas de biogás desde el 2016, además de haber participado parcialmente en el arranque de otras cuatro plantas de biometano, entre otros proyectos. La experiencia acumulada permite proyectar el arranque de la planta con bastante precisión, como se ha realizado en el arranque de LA GALERA.

Sala de equipos modular instalada entre los tanques de la planta de BIOMETAGAS LA GALERA.

AGF puede anunciar que la Puesta en Marcha de la Planta de biogás está concluida y la planta está operativa.
Durante el mes de julio se realizaron todas las pruebas de operatividad de la planta y el certificado de la instalación. Se instaló y se probó el programa de control y el SCADA para usuario, desarrollados y programados íntegramente por AGF. También se ha procedido a la formación básica de los operarios, que se irá continuando en los próximos meses.
Para la última semana de julio la planta se declaró operativa para comenzar el llenado, que es la siguiente fase de la puesta en marcha.
A mediados de agosto la planta estaba produciendo gas estable y de alta calidad, con un contenido en metano siempre superior al 65% en fracción molar. La planta está siendo alimentada a diario con alperujo deshuesado como principal material.
Este gas está siendo quemado en antorcha, realizándose el primer quemado el día 16 de agosto. El tiempo medio de encendido de antorcha está entre 12 y 18 horas diarias. Se continuará aliviando el gas mediante antorcha hasta que se disponga de la salida del biogás definitiva, estimada para la primera mitad del 2021. Durante estos meses se comenzará a aumentar la producción y la actividad de la planta hasta alcanzar valores de producción nominales.
El Centro de Operación de Plantas (COP) de AGF ha tomado el relevo al equipo de Puesta en Marcha al frente de la operación de la planta, que se está operando en remoto en coordinación con las tareas que deben realizarse físicamente, que principalmente es la alimentación de material. El COP lleva desde 2017 como responsable de la operación de la planta de BIOGASNALIA.
Desde el blog y la web de AGF se irá informando de los avances de este proyecto.

IMG_3305_RECORTADO_2

Antorcha de seguridad de la planta de biogás de BIOMETAGAS LA GALERA

 

 

MPB 2. DISEÑO DE UN PRODUCTO INDUSTRIAL. Estudio de Mercado y Objetivos de diseño.

Introducción diseño industrial.

En la introducción al proyecto de la MiniPlanta de Biogás (MPB), que se realizó en una entrada previa en este blog, ya se argumentó la motivación del desarrollo de una planta de biogás para gestionar descentralizadamente residuos orgánicos y del proyecto que se ha montado entorno a ella.

La presente entrada se centra en el estudio de mercado y de alternativas actuales, y en la propia concepción del producto y en los objetivos de diseño del mismo.

El diseño de la MPB es, básicamente, el diseño de un nuevo producto. En la actualidad, los proyectos industriales de planta de biogás obligan a un diseño individual y detallado, en el que cada proyecto requiere un gran esfuerzo de ingeniería. En cambio, la MPB puede concebirse como un producto, ya que puede ser reproducida siguiendo el mismo diseño, y puede aspirar a tener un amplio mercado con ligeras modificaciones.

Pero diseñar una MiniPlanta de Biogás (MPB) plantea muchas dudas iniciales, la primera es la propia definición del producto. Definir el producto por el equipo de diseño sólo puede llevarse a cabo después de evaluar distintos modelos de negocio y tras un estudio de la situación actual del mercado y de los productos existentes en el mismo.

Se considera que la MiniPlanta de Biogás (MPB) debe ser una planta industrial escalada a procesar cantidades de residuos en el entorno de 1 a 3 toneladas diarias. Pequeños productores de residuos cuya gestión sea costosa, responsables de la gestión de basura orgánica en países desarrollados o en vías de desarrollo, o consumidores de energía cara pueden obtener una rentabilidad económica y medioambiental de una instalación de estas características. Por supuesto, estas instalaciones deben procesar esta cantidad de material de entrada de forma estable y con un alto grado de automatización. Todas las instalaciones diseñadas para un orden de magnitud inferior a 1 t/d no son consideradas Mini Plantas sino Micro Plantas de Biogás, y estarían en un concepto diferente, el de la producción doméstica de biogás.

Situación actual del mercado. Análisis de productos similares.

Tras desarrollar detalladamente los modelos de negocio que acotaban la solución a nivel de inversión posible, se realizó un estudio de mercado comparativo de las plantas de baja potencia o MiniPlantas de biogás existentes actualmente en el mercado europeo. En este estudio no se tuvieron en cuenta aquellas instalaciones que no sean comparables, como instalaciones domésticas para producir gas o plantas de proyectos de investigación de empresas y universidades, que no están listas para salir a mercado.

La primera impresión que ofrece este mercado es que se trata de un mercado por despegar. Parece que no termina de desarrollarse en Europa la producción descentralizada de biogás a pesar de que hay varias empresas intentando este modelo de negocio en varios de los principales países europeos. Alguno de estos modelos son adaptaciones de diseños industriales a pequeña escala, mientras que otros tienen diseños más arriesgados.

Ejemplo de MiniPlanta de Biogás simulando una planta industrial de biogás a pequeña escala.

Es destacable que la mayoría de las empresas que ofrecen estas instalaciones a pequeña escala NO ofrecen plantas industriales de biogás. Es posible que deficiencias de diseño o de operación, la falta de producción estable de estas instalaciones o su coste de inversión sean factores que estén dificultando acercar esta actividad a su máximo desarrollo.

La inmensa mayoría de las plantas disponibles se centran en diseños para granjas, restos de grandes comedores o rechazos de supermercados, así como en el uso del biogás para la producción eléctrica, aunque en las últimas semanas han salido noticias relativas a proyectos similares al concepto de biogasinera que AGF PROCESOS BIOGAS SL pretende desarrollar, y que explicó previamente en la entrada MPB1. En aquellos casos en los que se asocia una planta de enriquecimiento en la instalación de biogás, de nuevo se trata de una adaptación a pequeña escala de un proceso industrial, por lo que es costoso. Los sistemas de separación por membranas o de absorción disponibles a pequeña escala necesitan trabajar a presión o a altas temperaturas, lo que incrementa el coste de inversión considerablemente.

Un sustrato al que estas plantas parecen no estar siendo orientadas es al pequeño productor de residuo orgánico industrial o a la fracción orgánica del residuo doméstico. En otras entradas de este blog se hicieron estimaciones del potencial energético de la fracción orgánica de la basura doméstica, siendo éste un sustrato que, en su inmensa mayoría, aún está yendo a vertedero, siendo ésta una pésima gestión ambiental y una pérdida de recursos.

La mayoría de las soluciones son desarrolladas total o parcialmente en contenedores marítimos (sea containers, ISO container), evitando obra en lugar de ubicación y consiguiendo entregar la parte de la planta más compleja en cuanto a equipos e instalaciones probadas de taller. En algunos casos se necesita la construcción de un reactor para producir biogás en su ubicación final o está incorporado en los propios contenedores. Esta solución en contenedor parece la óptima y AGF PROCESOS BIOGAS SL la utiliza frecuentemente en las instalaciones industriales.

Un elemento que destacar es que todas las plantas actuales necesitan almacenar el gas generado, por lo que tienen que disponer de algún tipo de gasómetro, ya sea con material flexible (cúpulas o bolsa), por campana de agua o incluso destinando a esta función un contenedor marítimo para líquidos.

Todos los diseños se configuran en varios contenedores, normalmente separados, que contienen distintos elementos o equipos, por lo que se  requiere la conexión mediante tuberías externas de los distintos elementos internos de los contenedores. Esto obliga a realizar una instalación en campo con elementos externos: tuberías, válvulas e instrumentación, entre otros. Estos elementos hacen poco elegante el diseño de toda la instalación y obliga a realizar trabajos en la ubicación final del elemento. Esto se agrava en aquellos diseños donde los contenedores están físicamente separados entre sí, como ocurre con los contenedores donde se consume el biogás.

Pero con bastante seguridad se puede afirmar que el mayor factor limitante de estas plantas es el volumen de reacción. La mayoría de las plantas actuales de baja potencia no disponen de un elevado volumen de reacción, ya que están limitadas al volumen disponible en contenedores marítimos; y las que tienen un elevado volumen es porque requieren algún tipo de construcción en la ubicación final de la planta. Exceptuando los últimos casos, que son aquellos modelos donde se construye un reactor circular externo, no se dispone de mucho más de unos 20 m3 de volumen útil, por lo que no se podrá generar más de 10-20 Nm3 de biogás al día de forma estable. Apretar el proceso de la planta puede llevar a problemas de funcionamiento, como espumas, baja producción, fallo en la microbiología o un gas sucio y de baja riqueza.

Las plantas industriales de biogás trabajan en un rango medio de producción relativa de 0,5 – 1 Nm3 biogás por m3 de reactor al día (Nm3b·m-3R·d-1). Estas plantas industriales disponen de sistemas de agitación y calefacción, y sería razonable pensar que tienen un funcionamiento y un rendimiento mejor que plantas diseñadas con los mismos parámetros pero que no disponen, por ejemplo, de una agitación equivalente.

Por ello, es muy complicado que estas instalaciones puedan mantener de manera estable una producción alta de biogás y un caudal de entrada elevado. Alimentar a diario una tonelada de materia orgánica conlleva probablemente el fallo del proceso y el colapso de la planta, incluso si se consiguiera trabajar con producciones relativas superiores a las mencionadas (1,5 – 2).

Considerando una producción media a esa tonelada alimentada, la producción de biogás debería superar a diario los 50 Nm3, por lo que difícilmente estas plantas pueden alcanzar una producción estable, ya que no disponen volumen para ello usando tecnología tradicional. Si no se genera todo el gas posible, el contenido en sólidos biodegradables en el lodo será elevado, y se corre el riesgo de problemas asociados a un proceso parcial, como espumas o un gas muy sucio. Por los motivos previos, todas estas instalaciones necesitan filtros de carbón externos o incluso incorporan separadores de sólidos para dar salida a la biomasa no biodegrada y poder usarla para compost. Gran parte de estos sólidos deben pertenecer aún a fracciones biodegradables que la planta no ha sido capaz de convertir a gas, por lo que no se ha generado la cantidad máxima de energía, lo que posiblemente dificultará convertir el gas en un ingreso o ahorro económico que rentabilice la planta.

Una vez revisada la situación del mercado, se pueden definir los objetivos específicos del diseño de la MPB de AGF.

Objetivos de Diseño.

Después de valorar lo disponible en el mercado y de estudiar distintos casos de estudio y de negocio, se fijan los siguientes objetivos de diseño. Estos objetivos buscan desarrollar un modelo de planta que supla todas las carencias de las plantas actuales previamente contempladas.

  1. Aplicar un proceso de alta eficiencia industrial a una planta de pequeña escala. Conseguir producciones relativas de biogás superiores a 5 Nm3bm-3R·d-1.

Se diseña la planta para poder desarrollar procesos de alta eficiencia y mayor complejidad que permitan que la producción de gas por unidad de volumen sea similar a la alcanzada a escala industrial por AGF PROCESOS BIOAGS SL. Esto permite que la cantidad de material procesada en la planta y el gas generado sean muy superiores a sus equivalentes con el mismo volumen de reacción.

Este aspecto es fundamental para conseguir rentabilizar la planta. Para ello, será fundamental el control de la operación de la planta, tratándola como si de una planta industrial se tratase.

  1. Estabilidad de producción.

Realizar un diseño de ingeniería robusto y fiable, que genere una producción de biogás estable. A nivel operativo esto debe traducirse en una planta con funcionamiento automatizado exceptuando la alimentación de materia prima y labores generales de mantenimiento.

La planta debe producir biogás de forma estable y controlada a pesar de enfrentar diversos cambios en la alimentación. Es muy posible que por logística haya plantas donde no se pueda alimentar diariamente, sino una vez cada varios días o incluso una vez a la semana. Esto no debe ser problema para la planta de biogás, que debe mantener el control de la producción de gas en todo momento y la estabilidad de las distintas reacciones.

Esta puede ser una gran limitación a la hora de localizar potenciales proyectos. Depender de una alimentación continua para tener una producción de gas estable reduce considerablemente las posibilidades de encajar el proyecto a nivel operativo en muchas ubicaciones.

Como puede comprenderse, este es otro apartado fundamental para rentabilizar la planta, que no haya problemas de producción por cambios de composición en los materiales de entrada o por un incremento puntual de carga orgánica y se genere un biogás que pueda ser valorizado económicamente.

  1. Tener un coste de inversión contenido.

Alcanzar este punto está muy relacionado con un diseño de ingeniería óptimo de la instalación. Los posibles modelos de negocio están muy limitados en cuanto a rentabilidad y sólo se podrá expandir esta actividad si se tiene un coste de inversión que justifique el riesgo y que permita rentabilizar la inversión en aquellos casos donde se cumpla la existencia de residuos y un uso justificado del biogás generado.

El coste de inversión debe evaluarse en función principalmente del uso que se le vaya a dar al gas generado, ya que cada uso requiere una inversión u otra.

  1. Ingeniería Óptima.

El diseño de ingeniería deber ser tan bueno como sea posible, cuidando al máximo cualquier detalle, incluso los que no se ven. Se han necesitado años de investigación y de desarrollo para el diseño de algunas partes de la planta MPB.

El diseño realizado se basa en los siguientes aspectos:

  • Diseño minimalista, amistoso y afable. Se busca que la planta sea lo más sencilla posible a nivel visual, sin ningún tipo de tuberías u otros elementos externos. Busca ser accesible, no ser excesivamente compleja. Normalmente las plantas de biogás no son algo cotidiano o agradable, en muchos casos todo lo contrario, tanto por diseño como por actividad u operación inadecuada. Hay que expandir el conocimiento social del biogás y eso sólo puede realizarse si se asocia a instalaciones alejadas de problemas, rentables y que no sean tan impactante como los tradicionales reactores circulares de hormigón con las cúpulas flexibles.
  • Cuidar los Detalles, sobre todo aquellos que puedan ser críticos. Todas las piezas y partes del diseño han sido evaluadas en detalle, sobre todo aquellas ocultas pero que pueden provocar un fallo futuro de la planta por reactividad química. Se ha trabajado todo con los materiales de mayor calidad posible, utilizando tuberías de acero inoxidable de forma externa o interna. No hay ninguna tubería de plástico o de hierro. Como detalle se considera también que la planta pueda quedar recogida completamente dentro del propio contenedor, sin tener que instalar o añadir elementos externos en la ubicación final. De esta manera, tras su alimentación, se podrá cerrar completamente tras recoger todos los elementos externos.
  • Alimentación. Sistema sencillo y flexible. La planta necesita un sistema de alimentación que sea versátil y que pueda adaptarse en función de las necesidades. La planta debe ser capaz de admitir residuos pastosos, líquidos o sólidos, y disponer de una zona de separación de inertes. También se debe poder adaptar a una alimentación más industrial, realizada por pala cargadora o cinta, como la que se tendría si se procesa el residuo de algún proceso industrial continuo. El diseño de la primera versión del sistema de alimentación ha sido uno los aspectos que más recursos ha consumido.
  • Capacidad de ampliación añadiendo procesos adjuntos. Se busca disponer de espacio suficiente para añadidos y mejoras posteriores, como procesos de higienización o esterilización. Esto puede permitir ampliar la planta en caso de que sea de interés económico. AGF PROCESOS BIOGAS SL ha entregado la primera planta de esterilización de cadáveres de cerdo SANDACH C2 por Método 1 de España. Esta tecnología ya está probada y puede integrarse en la MPB. Se ampliará la información sobre la planta de esterilización en futuras entradas de este blog.
  • Equipos de primera calidad, similares a los de una planta industrial. Para tener una planta de funcionamiento fiable se debe disponer de equipos de primera calidad. Por eso, la MPB debe disponer de las mismas capacidades que una planta industrial tanto a nivel de equipos, válvulas, tuberías e instrumentación. Por lo tanto, el diseño buscará dotar a la planta de todas las capacidades que tiene una planta industrial, para que no haya un severo efecto de cambio de escala.
  • La planta debe funcionar sin almacenar gas. El gas debe producirse a medida que se consume, sin necesidad de almacenar el gas producido en un periodo donde el consumo es inferior a la producción. Ahorrar en la inversión necesaria para el almacén de gas -en caso de que se consiga- es fundamental para que el coste de inversión y la huella de la planta esté contenida. Además, los almacenes de gas son elementos peligrosos en cualquier instalación. Este aspecto supone uno de los principales retos de la planta.
  • No usar plásticos. En las plantas existentes se suele instalar gran parte de las tuberías, tanto externas como internas, en materiales plásticos. Esto no supone una reducción de coste efectiva sobre la instalación con materiales más nobles, ya que el abaratamiento sobre metro lineal se ve compensado por el elevado coste de los accesorios; y además supone la posibilidad de desmontaje y cambio, lo que le da a todo el diseño un aspecto de provisionalidad que no se considera deseable. Las tuberías plásticas también incitan a modificar y cambiar las instalaciones, algo que se considera alejado de un proceso definitivo y una instalación de calidad. Por esto, todas las tuberías de la MPB están realizadas en inoxidable de calidad. La instalación de tuberías de alta calidad permite trabajar con fluidos sobrecalentados y asegura el correcto funcionamiento de la planta.
  • No tener elementos añadidos en la ubicación final. Independientemente de mejoras que se quieran llevar a cabo en la ubicación final, las necesidades del emplazamiento no deben ser superiores a una solera y al suministro de servicios necesarios (agua y/o electricidad) y evacuación de la energía si procede, ya sea en forma de gas, o transformada en electricidad y/o fluido térmico.
  • Capacidad de envío marítimo. Debido a que se considera la MPB de un producto de especial interés para países en vías de desarrollo, todo el diseño está realizado para su posible envío por transporte marítimo a cualquier puerto y su entrega posterior a cualquier parte del mundo.
  • Fácil montaje en campo. Al no necesitar instalaciones externas y llevar todos los elementos probados desde taller, no son necesarios trabajos complejos de conexión y puesta en marcha de la planta. Lo que debería permitir el arranque rápido de la planta, tan pronto se reciba en destino, se conecte y se tenga operativa evitando problemas de conexión en campo y con la mayor brevedad posible.
  • Marcado CE de la instalación. Debido a que no hay necesidad de un complejo montaje en destino, y que todo va diseñado y montado desde taller, se puede suministrar la MPB con un marcado CE y una evaluación HAZOP de cumplimiento de todos los requisitos legales a nivel de seguridad.
  • Que pueda ser producido en serie también debe abaratar los costes de inversión. Se busca disponer de 6 modelos de planta combinando distintos sistemas de alimentación y distintos usos del gas. Si el diseño no tiene que adaptarse, se podrá industrializar su montaje y tener un coste de inversión cada vez controlado.
  • Diseño que pueda ser patentado o protegido intelectualmente. Se busca un diseño de un proceso o producto lo suficientemente novedoso como para poder proceder a su protección intelectual e industrial por parte de AGF PROCESOS BIOGAS SL como desarrollador de este.
  1. Bajo coste de operación.

El coste de operación está muy relacionado con el diseño. Las estimaciones realizadas durante el diseño se consideran dentro de un rango asequible, aunque se tendrán que estudiar en el primer prototipo. Los costes laborales pueden suponer la mayor carga para la planta, por lo que se diseña con un alto grado de automatización, siendo labor del operario únicamente la alimentación de la planta, el resto funciona en automático y está controlado en remoto por el equipo del Centro de Operaciones (COP) de AGF.

AGF PROCESOS BIOGAS SL ofrecerá el servicio de operación en remoto de la planta. La entrega de la planta es el comienzo de la verdadera relación entre las partes, ya que AGF no quiere que el promotor quede abandonado a su suerte con una instalación que no controla, y a la que está obligado a dedicar tiempo y esfuerzo.

  1. Nuevos usos del gas. Producción de gas renovable.

La planta MPB tiene diversos usos posibles como instalación generadora de energía renovable. Es capaz de generar energía eléctrica y/o térmica, pero también puede ser capaz de producir gas renovable como vector energético para un uso posterior. Debido al estado actual del sector, donde todas las instalaciones están destinadas en su mayoría a la producción de energía eléctrica, se decide intentar dar un salto tecnológico y se intentará desarrollar el caso más complejo: producir biometano.

Para ello se ha desarrollado la planta de enriquecimiento, la PE 3 BM10, que combinada con la MPB dará el producto comercial de la MP2B, Mini Planta de Biogás y Biometano.

Producir energía eléctrica o calor es algo superado, sencillo, y es un uso válido que puede tener un mercado amplio. Hacer un proceso de separación de gases a baja presión y en una instalación de bajo coste sí es un reto tecnológico. El desarrollar la MiniPlanta de biogás con una planta de biometano sí es un gran salto adelante dentro del sector. Esta planta de separación de gases no espera llegar a valores de concentración de biometano para su uso en la red de gas natural, sino para su uso vehicular o su distribución a un punto de consumo cercano.

El proceso que se llevará a cabo en esta instalación es novedoso, y busca el punto de mayor separación de solubilidad entre los distintos gases a separar. El diseño de esta planta de enriquecimiento PE3 BM10 se ha llevado a cabo buscando no superar un coste de inversión determinado, por lo que no se podía trabajar a presiones moderadas ni altas.

El funcionamiento de esta planta de enriquecimiento y del proceso que lleva a cabo será uno de los principales objetos de estudio de la planta piloto, en esta primera versión construida. Si se consigue que la MPB cumpla con los principales requisitos de diseño previamente recogidos, se podrá poner en el mercado una planta de biogás que pueda contribuir a relanzar el sector de la gestión de pequeñas producciones de residuos orgánicos, ya que será capaz generar un vector energético que se pueda valorizar al mayor precio posible y en su totalidad.

Por ello, se decide no instalar un grupo de cogeneración para producción eléctrica, y dedicar el espacio y la inversión a la versión prototipo de la PE3 BM10, la planta de enriquecimiento a baja presión.

 Estado del proyecto. 

Una vez se han fijado los objetivos, se debe llevar a cabo el proceso de desarrollo de ingeniería y la ejecución del proyecto. AGF PROCESOS BIOGAS SL tiene las capacidades necesarias para poder desarrollar este producto hasta su salida a mercado y su comercialización posterior. El proceso de diseño y todo el montaje de la planta serán desarrollados en las próximas entradas de este blog.

A la fecha de la publicación, la planta MP2B está a un 70% de montaje. Se espera poder enviar la planta a su ubicación final durante la segunda quincena de abril.

Mientras tanto, en la parcela donde se va a llevar a cabo este proyecto se están realizando las obras necesarias para poder recibir la planta. Se espera poder comenzar la puesta en marcha antes de finalizar abril.

Obras para la solera donde se ubicará la MPB en su destino en los terrenos de AGF. Finales febrero 2020.

BIOGASNALIA alcanza una producción de 1MWe durante una prueba de rendimiento para evaluar potenciales inversiones

Introducción.

Durante años ha triunfado la opinión generalizada de que la industria del biogás solo es rentable con ayudas públicas, pero está ocurriendo lo mismo que con las energías eólica y fotovoltaica: el avance tecnológico hace rentable esta industria sin primas. El desarrollo de las distintas tecnologías está permitiendo que la energía renovable sea eficiente y rentable por sí misma, pudiendo competir en un mercado libre con las energías tradicionales no renovables.

Realizar esta afirmación sobre el biogás no es solo el resultado de una investigación de laboratorio, sino la conclusión de la vida de una planta industrial tras dos largos años de funcionamiento. La planta de biogás de BIOGASNALIA lleva en funcionamiento desde septiembre de 2017. Durante todo este tiempo ha funcionado de forma continua sin incidentes de mención y permitiendo que BIOGASNALIA sea una isla energética, obteniendo del biogás el suministro de todo el consumo térmico de sus calderas y el consumo eléctrico de las instalaciones y de la propia planta de biogás. Es una demostración de cómo una planta de biogás puede ser estable y producir controladamente en un escenario de cambio continuo de alimentación, tanto en composición como en cantidad, dependiente de la coyuntura de la gestión de residuos.

Se puede decir, por lo tanto, que la planta de biogás ha permitido a BIOGASNALIA ser, junto con L´OREAL, una de las dos empresas del P.I. Villalonquéjar que desarrollan su actividad en isla energética con fuentes renovables.

Durante todo este periodo la planta ha funcionado muy lejos de su potencial máximo, utilizando únicamente uno de los dos reactores metanogénicos (RM) disponibles a una carga muy inferior a la de diseño. Este hecho viene derivado de que en ese punto de funcionamiento la producción de gas era suficiente para alimentar todo su consumo y quemar en antorcha 24 horas diarias. En otra entrada de este blog, publicada en febrero de 2019, se explica en detalle el punto de funcionamiento normal, con una potencia de 500 kWe equivalentes. La producción de 125 Nm3/h de CH4, con sólo la mitad del volumen de la planta en uso, supuso un logro en términos de eficiencia, como se explica en la entrada citada.

Por lo tanto, la principal conclusión es que la planta está trabajando lejos de su máximo de producción de gas y de procesamiento de materia prima. Este hecho ha provocado la búsqueda de nuevos negocios alternativos que aprovechen y valoricen el potencial máximo de la planta.

Objetivo de la prueba de rendimiento.

Por lo anterior, y de cara a evaluar potenciales proyectos basados en llevar la planta a su producción potencial máxima, se ha procedido a la realización de una prueba de producción de la planta, similar a los Performance Test de la industria de procesos. El objetivo de la prueba de rendimiento es mostrar la capacidad máxima de producción de la planta. Esta prueba de rendimiento se engloba dentro de las negociaciones que se están llevando a cabo para la conversión de la planta de biogás en una planta de biometano, debido al interés actual de disponer de gas renovable y poder suplir las demandas de este producto, principalmente para su uso vehicular. Esa ampliación se realizaría mediante la instalación de una planta de separación de gases y enriquecimiento de la corriente de metano, que procesase todo el biogás generado en la planta actual trabajando a carga máxima. Superar con éxito la prueba de funcionamiento es condición necesaria para poder acometer la inversión.

La limitación principal para esta prueba es la cantidad de residuos de entrada de acuerdo con la licencia de actividad en vigor, por lo que se ha trabajado con un único reactor RM con el fin de cuantificar el valor máximo de producción de gas de cada reactor. Terminado de llenar y activar el segundo RM, no se ha utilizado en la prueba por haber alcanzado la planta el máximo de toneladas que puede procesar de acuerdo a su licencia actual.

Para cuantificar correctamente los resultados de la prueba, se ha incrementado la instrumentación de la planta, instalando un segundo caudalímetro, con objeto de tener una menor incertidumbre en las medidas de caudal de gas y poder realizar un balance correcto entre los distintos puntos de consumo. Actualmente se consume gas en dos calderas, un grupo electrógeno y una antorcha de alivio. Para la prueba se ha mantenido una caldera para abastecer de vapor a BIOGASNALIA trabajando a demanda (siempre superior al 90% de potencia) y se ha puesto la segunda caldera al 100%, liberando todo el vapor producido. Liberar el vapor genera un elevado nivel de ruido, lo que hace que la prueba tenga que limitarse temporalmente a unas semanas de funcionamiento. El consumo de ambas calderas es de 1,8 MWt y el del grupo electrógeno tiene una media de 130 kWe. De esta manera se asegura un consumo de biogás en torno a 1 MW eléctrico equivalente (MWe eq) sin contar el posible consumo de la antorcha. En términos de caudal de metano se necesitan unos 240Nm3/h para poder mantener esta producción de energía.

La planta es controlada en remoto por AGF y atendida por personal de BIOGASNALIA. Es AGF la responsable de controlar todos los procesos automatizados de la planta, siendo la producción de gas el principal de estos. AGF es la operadora de las plantas que construye con el objetivo de hacer realidad los escenarios contemplados en los estudios de ingeniería básica. AGF tiene la responsabilidad, durante la etapa de operación, de poner en prácticas las licencias tecnológicas aportadas al proyecto y utilizadas durante las distintas fases de diseño. Esta operación es la que permite que los distintos casos de estudios contemplados acaben siendo una realidad.

Resultados.

Durante las últimas semanas se está produciendo de manera estable un caudal medio superior a los 200Nm3/h de metano, con periodos superiores a 250Nm3/h cuando el consumo lo permite y una media entorno a 230Nm3/h. La producción de gas es controlada completamente por AGF y su sistema de control, por lo que se ha trabajado adecuando el caudal producido con el caudal consumido, no habiendo alcanzado la planta aún su punto máximo de producción en esta prueba por reactor.

Esto significa una producción relativa volumétrica superior a 9 Nm3/m3R·d. La producción de biogás relativa volumétrica ha sido muy elevada durante los años previos, alcanzando valores de más de 5 Nmde biogás por mde reactor al día. La producción relativa volumétrica no es un parámetro ampliamente empleado en la industria del biogás, pero es muy útil para comprender la eficiencia de una planta. Esta producción relativa cuantifica el volumen de gas producido en base diaria por unidad de volumen de reacción para generarlo. Tiene distintas implicaciones, tanto desde el punto de vista bioquímico como fluidodinámico o de diseño, entre otras. Las producciones relativas en la industria tradicional del biogás se encuentran entre 0,5 y 1,5 Nm3/m3R·d.

Cuanto mayor sea esta producción relativa, mayor cantidad de material se puede procesar por unidad de volumen y menos volumen de planta es necesario para producir un determinado caudal de gas.

A modo de ejemplo se pueden resumir distintas plantas o proyectos donde AGF ha participado, mostrando los valores de producción relativa volumétrica de estos proyectos:

PROYECTO RM / Digestor, m3 Tanque Final, m3 Potencia, MWe eq. Eficiencia,

Nm3/m3d

WK Q.1000.1

Inverness, Escocia

4500 m3. Digestor. 7200 m3. Útiles. Cubiertos y con calefacción. 1 MWe. 500 Nm3/h

2 CHP x 500 kWe.

Digestor 2.67

Útil 1,02

Tx Q.499.1

Lincoln, Inglaterra

2513 m3 3927 m3 útiles. 499kWe. 250 Nm3/h Digestor 2.38

Útil 0,93

URBILIZA RENOVABLES

Zaragoza Planta 1 etapa

5000 m3

2 x 2500 m3

3200 m3. No útiles. 500 kWe 250Nm3/h

2 CHP x 250 kWe

1.2
 
Las plantas diseñadas y arrancadas en Reino Unido tenían un parámetro de producción relativa volumétrica muy avanzado para su época (diseñadas a principios de 2015 y arrancadas en la primera mitad del 2016), pero que se veía en la práctica desvirtuado por la presencia de unos grandes almacenes finales activos y útiles, donde se generaba descontroladamente gran parte de la producción de gas de la planta.

Por lo tanto, se puede afirmar que la planta de BIOGASNALIA  ha demostrado una producción de 1MWe eq y una potencia máxima posible de 1,5-2MWe eq en caso de uso de los dos reactores metanogénicos (RM) disponibles.

Durante toda la prueba la composición del gas fue estable y con un contenido en azufre inferior a 100 ppm, a pesar de estar introduciendo en la planta residuos con un alto contenido en proteínas. El caudal de biogás se mantuvo constante sobre los 300-350 Nm3/h.

Conclusiones.

La planta de biogás ha demostrado ser de una potencia equivalente de 1MWe. El potencial máximo de producción de la planta podrá se superior a 1,5 MWe en caso de usar todo el volumen de reacción disponible.

Se puede concluir que es un éxito de la industria del biogás haber podido llegar a estos niveles de producción, un incremento aproximado de 10 veces los parámetros estándares de la industria. Es la demostración industrial de una planta con un funcionamiento estable y una capacidad de producción a una escala completamente diferente con respecto al mercado y la tecnología tradicional.

La rentabilidad de este sector debe venir provocada por una optimización de la tecnología en la que se basa. La tecnología de AGF, desarrollada en España, es fruto de un mercado sin primas, y donde se ha tenido que evolucionar a nivel de conocimiento y desarrollo para poder llegar a una industria más eficiente que haga rentable este sector en las condiciones actuales.

BIOGASNALIA es un ejemplo de planta estable y rentable, con dos años de historial de producción que lo demuestra. Otro caso de rentabilidad es la planta de URBILIZA RENOVABLES, en Remolinos, Zaragoza; operada por AGF desde el 2014. Aún diseñada con tecnología de una etapa, con una producción relativa volumétrica inferior a 1,5 Nm3/m3R·d, es una empresa rentable por su adecuada gestión técnica y por los servicios prestados como punto de gestión de residuos orgánicos.

AGF espera que, con estos avances, junto con el desarrollo de tecnología de enriquecimiento propia, se pueda demostrar que la industria del biogás y la del biometano son actividades económicamente rentables, además de extremadamente positivas ambientalmente. A su vez, el problema ambiental y social derivado de la producción de residuos orgánicos motiva incrementos notables del coste de una gestión adecuada, dando el justo valor a las industrias que posibilitan esta gestión, fundamentalmente el biogás en sus distintos usos.

Se puede concluir afirmando que, definitivamente, el biogás es una actividad económica rentable. La prueba de rendimiento que se ha llevado a cabo debe contribuir a su demostración, habiendo convertido durante unas semanas a BIOGASNALIA en una planta de 1 MW eléctrico equivalente.

AGF se da de alta en varias asociaciones del sector

 

Durante los últimos meses AGF PROCESOS BIOGAS SL ha sido invitado a formar parte de distintas asociaciones sectoriales para la defensa y fomento del gas de origen renovable en sus distintas formas: biogás, biometano, biohidrógeno, etc.

Por este motivo, AGF PROCESOS BIOGAS SL ha decidido adscribirse como socio a GASNAM y AEBIG.

Los desarrollos llevados a cabo a escala industrial por AGF PROCESOS BIOGAS SL la sitúan a la vanguardia en procesos novedosos en diversos sectores, todos relacionados en mayor o medida con el biogás. Con su participación en el movimiento asociacionista también pretende estar a la cabeza del fomento de un sector con un futuro prometedor, como el del gas renovable, y poder colaborar activamente en el impulso de la tecnología y de la industria del biogás y del biometano, uniendo su voz a las de otras empresas y agentes con prestigio en el sector.

AGF PROCESOS BIOGAS SL también es socio de AESSGAN desde el 2018. Con esta asociación se están llevando a cabo interesantes avances y gestiones, de donde se ha extraído en este tiempo una grata impresión de la utilidad de las asociaciones.

GAS RENOVABLE: Presente y Futuro

Hace unos días se publicó el anuario de la revista ENERGÍA Y MEDIO AMBIENTE que contiene un artículo sobre AGF. Unos meses atrás, ante las novedades que se estaban produciendo en el sector, el director de la publicación, don Francisco Cortijo, solicitó la visión de AGF sobre la situación actual del biogás y el biometano en España. Para ello se redactó un artículo a modo de resumen de lo que han sido los últimos 2 años para AGF, tiempo transcurrido desde que se le invitara por primera vez a participar en esta publicación anual.

El artículo recoge la evolución del sector en estos años y los retos que, desde AGF, se consideran para el futuro próximo. Estos retos se basan en plantas de proceso capaces de cerrar el ciclo del nitrógeno, así como la gestión deslocalizada de pequeñas cantidades de residuos orgánicos dentro de una economía circular mediante la producción de biogás cerca del origen de producción del residuo, para evitar el transporte. Todo lo anterior sin olvidar los grandes proyectos industriales para la producción de biometano como principal gas renovable.

Para cerrar el ciclo del nitrógeno AGF ha diseñado su propia tecnología de plantas NDN que suministra tanto para proyectos de biogás u otras industrias. Este proceso se ha demostrado capaz de eliminaciones de N muy elevadas.

La producción descentralizada de pequeñas cantidades de residuos orgánicos es un reto de gestión actual. Para poder ofertar una solución a esta problemática, AGF está diseñando de su primer modelo de Mini Planta de Biogás (MPB), capaz de gestionar hasta 1 tonelada de residuo al día, con el fin de construirla en los terrenos propiedad de la empresa en La Lapa, Badajoz, dentro de un proyecto CDTI con el Ministerio de Ciencia, Innovación y Universidades.

Para más información, se puede encontrar el artículo pinchando en la imagen.

Artículo

ENAGAS constituye BIOENGAS para desarrollar el biometano con AGF en España

BIOENGAS es el proyecto ganador del concurso de emprendimiento interno de ENAGAS del año 2018.

Con motivo del primer premio recogido por el proyecto empresarial BIOENGAS se hizo una entrada al blog de AGF. Para más información consúltese el siguiente enlace:

El pasado mes de marzo ENAGAS ha constituido la sociedad BIOENGAS, pasando de ser un proyecto a ser una realidad. El objetivo de BIOENGAS es ser un actor destacado en el desarrollo del mercado del biometano en España mediante diferentes proyectos de biometano industrial con AGF PROCESOS BIOGAS SL como socio estratégico.

Con el objetivo de fortalecer financieramente el desarrollo de nuevos proyectos, AGF PROCESOS BIOGAS SL introdujo el proyecto de BIOENGAS a SUMA Capital. Recientemente se ha anunciado el acuerdo alcanzado entre ambos para financiar los fondos necesarios para el desarrollo de los proyectos.

AGF aportará su tecnología de biogás de alta eficiencia al desarrollo de proyectos de BIOENGAS. Este acuerdo abarca desde el diseño de las plantas de biogás hasta las plantas de enriquecimiento y compresión de biometano, pasando por otros elementos de la industria auxiliar del biogás, siendo todo tecnologías desarrolladas por AGF PROCESOS BIOGAS SL y su Centro Investigación y Desarrollo Aplicado.

Además del aporte tecnológico, el modelo de negocio sobre el biometano desarrollado por AGF ha sido validado por ENAGAS en este acuerdo y será la base para el desarrollo de los proyectos.

AGF PROCESOS BIOGAS SL ha aportado una selección de proyectos de su cartera potencialmente desarrollables con la participación de BIOENGAS. En la actualidad se están evaluando una docena de estos proyectos en distinto grado de desarrollo.

La constitución de BIOENGAS y la colaboración con AGF PROCESOS BIOGAS SL busca desarrollar el biometano en España y convertir en realidad el potencial nacional en este sector.

 

BIOGASNALIA CONSIGUE INDEPENDENCIA ENERGÉTICA PLENA GRACIAS A SU PLANTA DE BIOGÁS AGF

Cuando los trabajadores llegan a las instalaciones de BIOGASNALIA no perciben nada nuevo, todo funciona como siempre, pero hay una diferencia fundamental: trabajan en isla energética. Gracias a su planta de biogás generan toda la energía que consumen, tanto térmica como eléctrica, siendo, junto con L’Oreal, las dos empresas del P.I. de Villalonquéjar que mantienen toda su actividad con energía renovable generada in situ.

AGF entregó funcionando la planta de biogás de BIOGASNALIA en septiembre de 2017 y lleva en operación estacionaria desde entonces. Los resultados de la planta están siendo muy satisfactorios, permitiendo generar gas para abastecer dos calderas con un consumo térmico industrial para la generación de vapor. Los resultados técnicos y económicos del año 2018, que es el primer ejercicio completo de la planta, han sido muy positivos, demostrando los rendimientos del proceso y que la tecnología de AGF hace que la industria del biogás pueda ser rentable sin primas compitiendo directamente contra el gas natural en los proyectos donde haya suficiente consumo.

Grupo electrógeno alimentado con biogás.

Se puede destacar que:

  • AGF está operando la planta para producir unos 250 Nm3/h de biogás, cantidad suficiente para mantener una producción de 500 kWe.
  • Se está trabajando con sólo uno de los dos reactores RM, por lo que la planta está a mitad de capacidad.
  • La eficiencia de producción es superior a 5 Nm3 de biogás por m3 de reactor día. Las tecnologías tradicionales de biogás están en el entorno de 0.5 a 1,5.
  • Durante este año de operación, y a pesar de la modificación diaria de la alimentación, la planta ha funcionado 100% del tiempo (8760 horas/año), disponiendo de gas de forma continua para los distintos usos. No ha habido falta de biogás en ningún momento.
  • Se ha estado quemando gas excedente en la antorcha diariamente.
  • La planta no se alimenta los fines de semana pero mantiene la producción porque el consumo de gas en calderas se mantiene sábados y domingos.
  • Se pudo llevar a escala industrial procedimientos que AGF está desarrollando para la producción de biohidrógeno, llegando a producir un gas con un contenido estable de H2 sobre el 60%.
  • En ningún momento de la vida de la planta el gas llevado a combustión ha tenido un contenido en azufre superior a 200 ppm. El gas no sufre ningún tipo de tratamiento.
  • El sistema de control de combustión de  AGF permite tener una calidad de llama superior al 93%, alcanzando por lo tanto una eficiencia alta de combustión, similar a la que se consigue quemando gas natural.

Desde el principio se están evaluando distintas posibilidades de ampliación de la planta y del uso del gas. Mientras se toma una decisión, el promotor ha decidido generar electricidad para autoconsumo de sus instalaciones y de la propia planta de biogás. Este grupo electrógeno se incluye dentro de una ampliación general de la planta de BIOGASNALIA, incluyendo caldera nueva, ampliación de la distribución y uso de biogás y del propio sistema de control para regular el funcionamiento en isla con el grupo electrógeno.

Soplantes de biogás para control de combustión junto con la unidad de secado del biogás. Equipo diseñado y suministrado prefabricado en bancada por AGF.

La potencia máxima de consumo eléctrico combinando las instalaciones de BIOGASNALIA y la propia planta de biogás asciende al entorno de 150 kWe, que son fácilmente abastecidos por este grupo con potencia máxima de 170 kWe.

AGF ha diseñado un sistema inteligente de control de consumo que, por ejemplo, incrementa el consumo en la planta de biogás si ha caído en la nave para mantener el consumo en el grupo por encima del mínimo de funcionamiento.

El grupo eliminará unas horas diarias de quemado de gas en antorcha siempre que la planta no aumente su producción o ponga en marcha el segundo reactor.

El gas rico en H2 era válido para quemado en calderas, pero no para una combustión interna que necesitaba un PCI mínimo de 5 kWhT/Nm3. Por lo tanto, AGF ha llevado la planta a un punto de operación donde el gas se genera con un PCI válido para quemado en el grupo electrógeno, con una composición de gases combustibles de 43% de CH4 y 42% de H2. Este es el gas que se alimenta al grupo electrógeno.

Con esta ampliación BIOGASNALIA se puede mantener completamente aislada, añadiendo un ahorro más a la empresa promotora y permitiendo a la planta de biogás disponer de electricidad excedentaria, dejando de ser un factor limitante el autoconsumo eléctrico de la propia planta.

Se continúa trabajando en futuras ampliaciones y nuevos usos de la energía generada y la potencialmente disponible.

BIOGASNALIA demuestra que es posible el autoconsumo completo, con una correcta gestión del gas para la generación eléctrica y térmica, así como del control simultáneo de combustión en distintos elementos finales.

SCADA de la planta de biogás de BIOGASNALIA.

Participación de Francisco Guzmán en Ideas For

En Diciembre de 2017 se celebró en Badajoz uno de los eventos que la asociación Ideas For realiza a nivel nacional. Se invitó a Francisco Guzmán, socio Fundador de AGF, a participar con una charla para compartir su experiencia empresarial y proponer ideas de negocio para Badajoz. Francisco Guzmán habló sobre los comienzos de AGF, su evolución y algunas de las ideas a desarrollar a medio plazo.
En los minutos que duró la exposición, Francisco Guzmán transmitió a los asistentes las inquietudes que le llevaron en 2007 a visualizar su propia empresa de biogás. Comentó los retos en los inicios, las decisiones, buenas y malas, además de las experiencias profesionales que llevaron a la creación de AGF Ingeniería de Procesos.

 

Queremos agradecer desde AGF a la organización de Ideas For por la invitación a participar en este evento. Tenemos que pedirles disculpas por la calidad del vídeo y algunos cortes que se producen, ya que se grabó desde un teléfono movil.

Centro de Investigación Aplicada y Desarrollo de AGF. Ampliación de la página web.

 

AGF Ingeniería de Procesos ha añadido a su página web información sobre su Centro de IA+D. El Centro de Investigación Aplicada y Desarrollo de AGF  está especializado en procesos químicos, físicos y bioquímicos relacionados con el biogás y la producción de biocombustibles gaseosos.

Las instalaciones están ubicadas en la provincia de Badajoz, en la localidad de La Lapa, y fueron inauguradas en febrero de 2015. Durante estos años se han desarrollado una actividad investigadora que ha generado grandes resultados con aplicación directa industrial, habiendo sido clave el Centro de IA+D para los procesos y las plantas industriales que AGF ha construido y opera.

 

En estas instalaciones AGF desarrolla toda la investigación en nuevos procesos, optimización y soporte a plantas industriales; y donde va a comenzar un ambicioso plan de I+D 2018-2021 que ha sido financiado por CDTI, dependiente directamente del Ministerio de Industria, Comercio y Turismo del Gobierno de España.

El Centro de IA+D ha sido diseñado, construido y arrancado por AGF. Dispone de un alto grado de automatización que permite seguir los procesos en tiempo real, y operar el laboratorio en remoto.